Skip to main content

Java8 Tutorial

Modern Java - A Guide to Java 8

作者:winterbe

原文:java8-tutorial

引用文章:程序猿DD

简明教程

允许在接口中有默认方法实现

default

interface Formula {
double calculate(int a);

default double sqrt(int a) {
return Math.sqrt(a);
}
}
Formula formula = new Formula() {
@Override
public double calculate(int a) {
return sqrt(a * 100);
}
};

formula.calculate(100); // 100.0
formula.sqrt(16); // 4.0

Lambda表达式

List<String> names = Arrays.asList("peter", "anna", "mike", "xenia");

Collections.sort(names, new Comparator<String>() {
@Override
public int compare(String a, String b) {
return b.compareTo(a);
}
});
Collections.sort(names, (String a, String b) -> {
return b.compareTo(a);
});
Collections.sort(names, (String a, String b) -> b.compareTo(a));
Collections.sort(names, (a, b) -> b.compareTo(a));

函数式接口

@FunctionalInterface
interface Converter<F, T> {
T convert(F from);
}

Converter<String, Integer> converter = (from) -> Integer.valueOf(from);
Integer converted = converter.convert("123");
System.out.println(converted); // 123

方法和构造函数引用

class Something {
String startsWith(String s) {
return String.valueOf(s.charAt(0));
}
}

Something something = new Something();
Converter<String, String> converter = something::startsWith;
String converted = converter.convert("Java");
System.out.println(converted); // "J"

我们定义一个person工厂接口,用来创建新的person对象:

class Person {
String firstName;
String lastName;

Person() {}

Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;
}
}

interface PersonFactory<P extends Person> {
P create(String firstName, String lastName);
}
PersonFactory<Person> personFactory = Person::new;
Person person = personFactory.create("Peter", "Parker");

Lambda的范围

对于lambdab表达式外部的变量,其访问权限的粒度与匿名对象的方式非常类似。

访问局部变量

我们可以访问lambda表达式外部的final局部变量:

final int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);

stringConverter.convert(2); // 3
int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);

stringConverter.convert(2); // 3

然而,num在编译的时候被隐式地当做final变量来处理。下面的代码就不合法:

int num = 1;
Converter<Integer, String> stringConverter =
(from) -> String.valueOf(from + num);
num = 3;

访问成员变量和静态变量

与局部变量不同,我们在lambda表达式的内部能获取到对成员变量或静态变量的读写权。这种访问行为在匿名对象里是非常典型的。

class Lambda4 {
static int outerStaticNum;
int outerNum;

void testScopes() {
Converter<Integer, String> stringConverter1 = (from) -> {
outerNum = 23;
return String.valueOf(from);
};

Converter<Integer, String> stringConverter2 = (from) -> {
outerStaticNum = 72;
return String.valueOf(from);
};
}
}

访问默认接口方法

默认方法无法在lambda表达式内部被访问。因此下面的代码是无法通过编译的:

Formula formula = (a) -> sqrt( a * 100);

内置函数式接口

Predicates

Predicate是一个布尔类型的函数,该函数只有一个输入参数。Predicate接口包含了多种默认方法,用于处理复杂的逻辑动词(and, or,negate)

Predicate<String> predicate = (s) -> s.length() > 0;

predicate.test("foo"); // true
predicate.negate().test("foo"); // false

Predicate<Boolean> nonNull = Objects::nonNull;
Predicate<Boolean> isNull = Objects::isNull;

Predicate<String> isEmpty = String::isEmpty;
Predicate<String> isNotEmpty = isEmpty.negate();

Functions

Function接口接收一个参数,并返回单一的结果。默认方法可以将多个函数串在一起(compse, andThen)

Function<String, Integer> toInteger = Integer::valueOf;
Function<String, String> backToString = toInteger.andThen(String::valueOf);

backToString.apply("123"); // "123"

Suppliers

Supplier接口产生一个给定类型的结果。与Function不同的是,Supplier没有输入参数。

Supplier<Person> personSupplier = Person::new;
personSupplier.get(); // new Person

Consumers

Consumer代表了在一个输入参数上需要进行的操作。

Consumer<Person> greeter = (p) -> System.out.println("Hello, " + p.firstName);
greeter.accept(new Person("Luke", "Skywalker"));

Comparators

Comparator接口在早期的Java版本中非常著名。Java 8 为这个接口添加了不同的默认方法。

Comparator<Person> comparator = (p1, p2) -> p1.firstName.compareTo(p2.firstName);

Person p1 = new Person("John", "Doe");
Person p2 = new Person("Alice", "Wonderland");

comparator.compare(p1, p2); // > 0
comparator.reversed().compare(p1, p2); // < 0

Optionals

Optional不是一个函数式接口,而是一个精巧的工具接口,用来防止NullPointerException产生。这个概念在下一节会显得很重要,所以我们在这里快速地浏览一下Optional的工作原理。

Optional是一个简单的值容器,这个值可以是null,也可以是non-null。考虑到一个方法可能会返回一个non-null的值,也可能返回一个空值。为了不直接返回null,我们在Java 8中就返回一个Optional.

Optional<String> optional = Optional.of("bam");

optional.isPresent(); // true
optional.get(); // "bam"
optional.orElse("fallback"); // "bam"

optional.ifPresent((s) -> System.out.println(s.charAt(0))); // "b"

Streams

java.util.Stream表示了某一种元素的序列,在这些元素上可以进行各种操作。Stream操作可以是中间操作,也可以是完结操作。完结操作会返回一个某种类型的值,而中间操作会返回流对象本身,并且你可以通过多次调用同一个流操作方法来将操作结果串起来

Filter

stringCollection
.stream()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);

// "aaa2", "aaa1"

Sorted

stringCollection
.stream()
.sorted()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);

// "aaa1", "aaa2"

一定要记住,sorted只是创建一个流对象排序的视图,而不会改变原来集合中元素的顺序。原来string集合中的元素顺序是没有改变的。

Map

stringCollection
.stream()
.map(String::toUpperCase)
.sorted((a, b) -> b.compareTo(a))
.forEach(System.out::println);

// "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1"

Match

boolean anyStartsWithA =
stringCollection
.stream()
.anyMatch((s) -> s.startsWith("a"));

System.out.println(anyStartsWithA); // true

boolean allStartsWithA =
stringCollection
.stream()
.allMatch((s) -> s.startsWith("a"));

System.out.println(allStartsWithA); // false

boolean noneStartsWithZ =
stringCollection
.stream()
.noneMatch((s) -> s.startsWith("z"));

System.out.println(noneStartsWithZ); // true

Count

long startsWithB =
stringCollection
.stream()
.filter((s) -> s.startsWith("b"))
.count();

System.out.println(startsWithB); // 3

Reduce

该操作是一个终结操作,它能够通过某一个方法,对元素进行削减操作。该操作的结果会放在一个Optional变量里返回。

Optional<String> reduced =
stringCollection
.stream()
.sorted()
.reduce((s1, s2) -> s1 + "#" + s2);

reduced.ifPresent(System.out::println);
// "aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2"

Parallel Streams

像上面所说的,流操作可以是顺序的,也可以是并行的。顺序操作通过单线程执行,而并行操作则通过多线程执行。

int max = 1000000;
List<String> values = new ArrayList<>(max);
for (int i = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());
}

顺序排序

long t0 = System.nanoTime();

long count = values.stream().sorted().count();
System.out.println(count);

long t1 = System.nanoTime();

long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("sequential sort took: %d ms", millis));

// sequential sort took: 899 ms

并行排序

long t0 = System.nanoTime();

long count = values.parallelStream().sorted().count();
System.out.println(count);

long t1 = System.nanoTime();

long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("parallel sort took: %d ms", millis));

// parallel sort took: 472 ms

如你所见,所有的代码段几乎都相同,唯一的不同就是把stream()改成了parallelStream(), 结果并行排序快了50%。

Map

Map<Integer, String> map = new HashMap<>();

for (int i = 0; i < 10; i++) {
map.putIfAbsent(i, "val" + i);
}

map.forEach((id, val) -> System.out.println(val));

putIfAbsent避免我们将null写入;forEach接受一个消费者对象,从而将操作实施到每一个map中的值上。

map.computeIfPresent(3, (num, val) -> val + num);
map.get(3); // val33

map.computeIfPresent(9, (num, val) -> null);
map.containsKey(9); // false

map.computeIfAbsent(23, num -> "val" + num);
map.containsKey(23); // true

map.computeIfAbsent(3, num -> "bam");
map.get(3); // val33

当给定一个key值时,如何把一个实例从对应的key中移除:

map.remove(3, "val3");
map.get(3); // val33

map.remove(3, "val33");
map.get(3); // null
map.getOrDefault(42, "not found");  // not found
map.merge(9, "val9", (value, newValue) -> value.concat(newValue));
map.get(9); // val9

map.merge(9, "concat", (value, newValue) -> value.concat(newValue));
map.get(9); // val9concat

时间日期API

Java 8 包含了全新的时间日期API,这些功能都放在了java.time包下。新的时间日期API是基于Joda-Time库开发的,但是也不尽相同。

Clock

Clock提供了对当前时间和日期的访问功能。

Clock clock = Clock.systemDefaultZone();
long millis = clock.millis();

Instant instant = clock.instant();
Date legacyDate = Date.from(instant); // legacy java.util.Date

Timezones

时区类可以用一个ZoneId来表示。

System.out.println(ZoneId.getAvailableZoneIds());
// prints all available timezone ids

ZoneId zone1 = ZoneId.of("Europe/Berlin");
ZoneId zone2 = ZoneId.of("Brazil/East");
System.out.println(zone1.getRules());
System.out.println(zone2.getRules());

// ZoneRules[currentStandardOffset=+01:00]
// ZoneRules[currentStandardOffset=-03:00]

LocalTime

本地时间类表示一个没有指定时区的时间

LocalTime now1 = LocalTime.now(zone1);
LocalTime now2 = LocalTime.now(zone2);

System.out.println(now1.isBefore(now2)); // false

long hoursBetween = ChronoUnit.HOURS.between(now1, now2);
long minutesBetween = ChronoUnit.MINUTES.between(now1, now2);

System.out.println(hoursBetween); // -3
System.out.println(minutesBetween); // -239

LocalTime是由多个工厂方法组成,其目的是为了简化对时间对象实例的创建和操作,包括对时间字符串进行解析的操作。

LocalTime late = LocalTime.of(23, 59, 59);
System.out.println(late); // 23:59:59

DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedTime(FormatStyle.SHORT)
.withLocale(Locale.GERMAN);

LocalTime leetTime = LocalTime.parse("13:37", germanFormatter);
System.out.println(leetTime); // 13:37

LocalDate

记住,每一次操作都会返回一个新的时间对象。

LocalDate today = LocalDate.now();
LocalDate tomorrow = today.plus(1, ChronoUnit.DAYS);
LocalDate yesterday = tomorrow.minusDays(2);

LocalDate independenceDay = LocalDate.of(2014, Month.JULY, 4);
DayOfWeek dayOfWeek = independenceDay.getDayOfWeek();
System.out.println(dayOfWeek); // FRIDAY

解析字符串并形成LocalDate对象。

DateTimeFormatter germanFormatter =
DateTimeFormatter
.ofLocalizedDate(FormatStyle.MEDIUM)
.withLocale(Locale.GERMAN);

LocalDate xmas = LocalDate.parse("24.12.2014", germanFormatter);
System.out.println(xmas); // 2014-12-24

LocalDateTime

LocalDateTime sylvester = LocalDateTime.of(2014, Month.DECEMBER, 31, 23, 59, 59);

DayOfWeek dayOfWeek = sylvester.getDayOfWeek();
System.out.println(dayOfWeek); // WEDNESDAY

Month month = sylvester.getMonth();
System.out.println(month); // DECEMBER

long minuteOfDay = sylvester.getLong(ChronoField.MINUTE_OF_DAY);
System.out.println(minuteOfDay); // 1439

如果再加上的时区信息,LocalDateTime能够被转换成Instance实例。

Instant instant = sylvester
.atZone(ZoneId.systemDefault())
.toInstant();

Date legacyDate = Date.from(instant);
System.out.println(legacyDate); // Wed Dec 31 23:59:59 CET 2014
DateTimeFormatter formatter =
DateTimeFormatter
.ofPattern("MMM dd, yyyy - HH:mm");

LocalDateTime parsed = LocalDateTime.parse("Nov 03, 2014 - 07:13", formatter);
String string = formatter.format(parsed);
System.out.println(string); // Nov 03, 2014 - 07:13

Annotations

Java 8中的注解是可重复的。

@interface Hints {
Hint[] value();
}

@Repeatable(Hints.class)
@interface Hint {
String value();
}

变体1:使用注解容器(老方法)

@Hints({@Hint("hint1"), @Hint("hint2")})
class Person {}

变体2:使用可重复注解(新方法)

@Hint("hint1")
@Hint("hint2")
class Person {}
Hint hint = Person.class.getAnnotation(Hint.class);
System.out.println(hint); // null

Hints hints1 = Person.class.getAnnotation(Hints.class);
System.out.println(hints1.value().length); // 2

Hint[] hints2 = Person.class.getAnnotationsByType(Hint.class);
System.out.println(hints2.length); // 2

数据流教程

数据流如何工作

List<String> myList =
Arrays.asList("a1", "a2", "b1", "c2", "c1");

myList
.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println);

// C1
// C2

Nashorn 教程

Java 8 并发教程:线程和执行器

ThreadRunnable

Java从JDK1.0开始执行线程。在开始一个新的线程之前,你必须指定由这个线程执行的代码,通常称为task。这可以通过实现Runnable——一个定义了一个无返回值无参数的run()方法的函数接口

Runnable task = () -> {
String threadName = Thread.currentThread().getName();
System.out.println("Hello " + threadName);
};

task.run();

Thread thread = new Thread(task);
thread.start();

System.out.println("Done!");/
Runnable runnable = () -> {
try {
String name = Thread.currentThread().getName();
System.out.println("Foo " + name);
TimeUnit.SECONDS.sleep(1); // 一分钟的延迟
System.out.println("Bar " + name);
}
catch (InterruptedException e) {
e.printStackTrace();
}
};

Thread thread = new Thread(runnable);
thread.start();

TimeUnit在处理单位时间时一个有用的枚举类。你可以通过调用Thread.sleep(1000)来达到同样的目的。

使用Thread类是很单调的且容易出错。由于并发API在2004年Java5发布的时候才被引入。这些API位于java.util.concurrent包下,包含很多处理并发编程的有用的类。自从这些并发API引入以来,在随后的新的Java版本发布过程中得到不断的增强,甚至Java8提供了新的类和方法来处理并发。

Executor

并发API引入了ExecutorService作为一个在程序中直接使用Thread的高层次的替换方案。Executos支持运行异步任务,通常管理一个线程池,这样一来我们就不需要手动去创建新的线程。在不断地处理任务的过程中,线程池内部线程将会得到复用,因此,在我们可以使用一个executor service来运行和我们想在我们整个程序中执行的一样多的并发任务。

下面是使用executors的第一个代码示例:

ExecutorService executor = Executors.newSingleThreadExecutor();
executor.submit(() -> {
String threadName = Thread.currentThread().getName();
System.out.println("Hello " + threadName);
});

// => Hello pool-1-thread-1

Executors类提供了便利的工厂方法来创建不同类型的 executor services。在这个示例中我们使用了一个单线程线程池的 executor。

代码运行的结果类似于上一个示例,但是当运行代码时,你会注意到一个很大的差别:Java进程从没有停止!Executors必须显式的停止-否则它们将持续监听新的任务。

ExecutorService提供了两个方法来达到这个目的——shutdwon()会等待正在执行的任务执行完而shutdownNow()会终止所有正在执行的任务并立即关闭execuotr。

这是我喜欢的通常关闭executors的方式:

try {
System.out.println("attempt to shutdown executor");
executor.shutdown();
executor.awaitTermination(5, TimeUnit.SECONDS);
}
catch (InterruptedException e) {
System.err.println("tasks interrupted");
}
finally {
if (!executor.isTerminated()) {
System.err.println("cancel non-finished tasks");
}
executor.shutdownNow();
System.out.println("shutdown finished");
}

executor通过等待指定的时间让当前执行的任务终止来“温柔的”关闭executor。在等待最长5分钟的时间后,execuote最终会通过中断所有的正在执行的任务关闭。

Java 8 并发教程:同步和锁

Java 8 并发教程:原子变量和 ConcurrentMap

Optional

https://zhuanlan.zhihu.com/p/586164047